Publication

Mapping the diverse phenotypic states of yeast lipid metabolism to enzymes using mechanistic kinetic models

Sofia Tsouka
2018
Poster talk
Abstract

Lipids carry a very important role in cell structure and function, as well as in the physiopathology of many diseases. Maintenance of the lipid profiles should be tightly regulated as it is very important for preserving membrane permeability, cell integrity and several other functions. Large-scale kinetic models of metabolic networks are essential in order to accurately capture and predict such behaviors of cellular systems when subject to perturbations. To this end, we developed a detailed model of the lipid metabolism, in order to identify how the stoichiometric and kinetic coupling determines lipid homeostasis and its regulation. We have created a comprehensive model of the lipids network of yeast, based on the genome-scale metabolic model of S. cerevisiae. We curated this model using thermodynamic data as well as lipidomic measurements and we used the Optimization and Risk Analysis of Complex Living Entities (ORACLE) framework to generate populations of parametrized kinetic models that are consistent with the given physiology, while satisfying the stoichiometric and thermodynamic constraints and accounting for the parametric uncertainty. The metabolic model encompasses 843 reactions and 571 metabolites across 4 cellular compartments (cytosol, mitochondria, peroxisomes and endoplasmic reticulum), and includes the following lipid-related subsystems: biosynthesis, elongation, and degradation of fatty acids, biosynthesis and esterification of sterols, biosynthesis of phospholipids, sphingolipids, and cardiolipin, triacylglyceride decomposition and the mevalonate pathway. It also includes several key parts of yeast metabolism such as glycolysis, citric acid cycle, oxidative phosphorylation etc. Having computed the distributions of the computed kinetic models' parameters, we constructed the dynamic mass balances of the species. The model can be used to simulate the dynamic evolution of concentration profiles in response to small perturbations of enzyme activities, as well as to identify the enzymes that control the distributions of fluxes through reactions and metabolic concentrations at a representative steady state. Given a particular metabolic phenotype, we can further use this analysis to identify the changes in specific enzyme activities that are responsible for this particular phenotype.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Metabolism
Metabolism (məˈtæbəlɪzəm, from μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks for proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments.
Thermodynamic potential
A thermodynamic potential (or more accurately, a thermodynamic potential energy) is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. Josiah Willard Gibbs in his papers used the term fundamental functions. One main thermodynamic potential that has a physical interpretation is the internal energy U.
Metabolic network modelling
Metabolic network modelling, also known as metabolic network reconstruction or metabolic pathway analysis, allows for an in-depth insight into the molecular mechanisms of a particular organism. In particular, these models correlate the genome with molecular physiology. A reconstruction breaks down metabolic pathways (such as glycolysis and the citric acid cycle) into their respective reactions and enzymes, and analyzes them within the perspective of the entire network.
Show more
Related publications (105)

Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states

Vassily Hatzimanikatis, Ljubisa Miskovic, Michaël Roger Germain Moret

Large omics datasets are nowadays routinely generated to provide insights into cellular processes. Nevertheless, making sense of omics data and determining intracellular metabolic states remains challenging. Kinetic models of metabolism are crucial for int ...
2023

Rational combination platform trial design for children and young adults with Diffuse Midline Glioma: a report from PNOC

Sebastian Martin Waszak

Diffuse midline glioma (DMG) is a devastating pediatric brain tumor unresponsive to hundreds of clinical trials. Approximately 80% of DMGs harbor H3K27M oncohistones, which reprogram the epigenome to increase the metabolic profile of the tumor cells. We ha ...
2023

Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria

Marek Elias, Shweta Vinodrai Pipaliya

The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how th ...
San Francisco2023
Show more
Related MOOCs (14)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Thermodynamics
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
Thermodynamics
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.