Publication

Integrating Heuristic and Machine-Learning Methods for Efficient Virtual Machine Allocation in Data Centers

Abstract

Modern cloud data centers (DCs) need to tackle efficiently the increasing demand for computing resources and address the energy efficiency challenge. Therefore, it is essential to develop resource provisioning policies that are aware of virtual machine (VM) characteristics, such as CPU utilization and data communication, and applicable in dynamic scenarios. Traditional approaches fall short in terms of flexibility and applicability for large-scale DC scenarios. In this paper we propose a heuristic- and a machine learning (ML)-based VM allocation method and compare them in terms of energy, quality of service (QoS), network traffic, migrations, and scalability for various DC scenarios. Then, we present a novel hyper-heuristic algorithm that exploits the benefits of both methods by dynamically finding the best algorithm, according to a user-defined metric. For optimality assessment, we formulate an integer linear programming (ILP)-based VM allocation method to minimize energy consumption and data communication, which obtains optimal results, but is impractical at runtime. Our results demonstrate that the ML approach provides up to 24% server-to-server network traffic improvement and reduces execution time by up to 480x compared to conventional approaches, for large-scale scenarios. On the contrary, the heuristic outperforms the ML method in terms of energy and network traffic for reduced scenarios. We also show that the heuristic and ML approaches have up to 6% energy consumption overhead compared to ILP-based optimal solution. Our hyper-heuristic integrates the strengths of both the heuristic and the ML methods by selecting the best one during runtime.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Data center
A data center (American English) or data centre (Commonwealth English) is a building, a dedicated space within a building, or a group of buildings used to house computer systems and associated components, such as telecommunications and storage systems. Since IT operations are crucial for business continuity, it generally includes redundant or backup components and infrastructure for power supply, data communication connections, environmental controls (e.g., air conditioning, fire suppression), and various security devices.
Linear programming
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints.
Automated machine learning
Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems. AutoML potentially includes every stage from beginning with a raw dataset to building a machine learning model ready for deployment. AutoML was proposed as an artificial intelligence-based solution to the growing challenge of applying machine learning. The high degree of automation in AutoML aims to allow non-experts to make use of machine learning models and techniques without requiring them to become experts in machine learning.
Show more
Related publications (38)

Intermediate Address Space: virtual memory optimization of heterogeneous architectures for cache-resident workloads

David Atienza Alonso, Marina Zapater Sancho, Luis Maria Costero Valero, Darong Huang, Qunyou Liu

The increasing demand for computing power and the emergence of heterogeneous computing architectures have driven the exploration of innovative techniques to address current limitations in both the compute and memory subsystems. One such solution is the use ...
2024

Learning to Remove Cuts in Integer Linear Programming

Volkan Cevher, Grigorios Chrysos, Efstratios Panteleimon Skoulakis

Cutting plane methods are a fundamental approach for solving integer linear programs (ILPs). In each iteration of such methods, additional linear constraints (cuts) are introduced to the constraint set with the aim of excluding the previous fractional opti ...
2024

CloudProphet: A Machine Learning-Based Performance Prediction for Public Clouds

David Atienza Alonso, Marina Zapater Sancho, Luis Maria Costero Valero, Darong Huang, Ali Pahlevan

Computing servers have played a key role in developing and processing emerging compute-intensive applications in recent years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for limi ...
2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.