Publication

Frictional and transport properties of faults zones in the Opalinus Clay formation

Abstract

Deep geological repositories in clay formations are a promising option to ensure the long-term isolation of nuclear waste from the population and the environment. In Switzerland, the Opalinus Clay (OPA) formation is a shale whose favorable barrier properties have been characterized in the framework of the Mont Terri Laboratory project. Yet, faults intersecting the formation brings the integrity of future repositories into question. Faults, indeed, might reactivate upon any physical hydro-mechanical perturbation resulting in induced seismicity or creation of preferential paths for fluid leakage. How these fault arrays will reactivate, i.e., aseismic or seismic, and whether dilatancy or compaction will accompany reactivation are far from being well established, yet are of paramount importance to furthering any predictive capabilities. In this context, the objective of this research is to study, through laboratory experiments, the frictional and transport properties of the fault zones intersecting the OPA formation at relevant conditions for nuclear waste storage. The first section of this study reveals a fault gouge that has a pore network dominated by nanopores, yet a higher porosity, and slightly higher permeability with respect to the surrounding non-deformed rock. Furthermore, analyses show a lack of calcite content within the fault gouge, in agreement with recent evidence suggesting pore fluids flowing throughout it. Based on these results, the fault gouge does not act as a barrier; rather it can act as preferential but localized and narrow fluid flow channel favoring fluid transportation. The second part of this research reveals 1) a weak frictional strength of the OPA fault gouge, however extremely weaker under wet conditions, 2) a clear aseismic stable behavior for wet and partially saturated samples, yet a transition from unstable to stable behavior with increasing sliding velocity for dry samples, 3) almost null frictional healing, i.e., a lack of re-strengthening during interseismic periods, 4) cataclastic deformation processes and, 5) on wet experiments, shear-enhanced dilation and a small increase in permeability after shearing. All these results indicate that OPA fault gouge could be easily reactivated via aseismic creep, possibly acting as weak fluid conduits. However, if temporarily dried, they could become potentially unstable. A final section of this work presents the frictional response of simulated scaly clays. Simulated and natural scaly clay fabrics present significant similarities, notably mirror-like surfaces which are formed at sub-seismic velocities and low normal stresses in the laboratory. The simulated scaly fabrics exhibit 1) a lower frictional strength than the fault gouge at same partially saturated conditions, 2) both stable and unstable behavior, i.e., the co-existence of velocity-strengthening and weakening slip patches, and 3) low frictional healing. These observations suggest that the scaly clay fabrics are prone to host earthquakes, yet they might be small and rare over time. This Ph.D. work finds direct implications for the concept of deep geological repositories in clays. In spite of favorable barrier properties of non-deformed OPA, faults cannot be ignored. Hence, this study might be the starting point for the long-term risk mitigation strategies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
High-level radioactive waste management
High-level radioactive waste management concerns how radioactive materials created during production of nuclear power and nuclear weapons are dealt with. Radioactive waste contains a mixture of short-lived and long-lived nuclides, as well as non-radioactive nuclides. There was reportedly some of high-level nuclear waste stored in the United States in 2002. The most troublesome transuranic elements in spent fuel are neptunium-237 (half-life two million years) and plutonium-239 (half-life 24,000 years).
Deep geological repository
A deep geological repository is a way of storing hazardous or radioactive waste within a stable geologic environment (typically 200–1000 m deep). It entails a combination of waste form, waste package, engineered seals and geology that is suited to provide a high level of long-term isolation and containment without future maintenance. This will prevent any radioactive dangers.
Fault (geology)
In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.
Show more
Related publications (40)

A FEM modelling workflow to simulate THM effects in the rock around nuclear waste packages

Matthias Timothee Stanislas Wojnarowicz

High-level waste, stemming from nuclear electricity generation poses significant environmental and safety concerns. Currently, high-level wastes are stored in interim facilities needing constant monitoring and waiting for a definitive solution. Deep geolog ...
EPFL2024

Microbial hydrogen sinks in the sand-bentonite backfill material for the deep geological disposal of radioactive waste

Rizlan Bernier-Latmani, Manon Frutschi, Nicolas Louis Maurice Jacquemin, Simiao Wang, Camille Aude Rolland, Niels Burzan, Aislinn Ann Boylan

The activity of subsurface microorganisms can be harnessed for engineering projects. For instance, the Swiss radioactive waste repository design can take advantage of indigenous microorganisms to tackle the issue of a hydrogen gas (H2) phase pressure build ...
2024

Evolution of water content and suction of Opalinus Clay from recovery at the drilling site to handling in the laboratory

Lyesse Laloui, Alessio Ferrari, Angelica Tuttolomondo

Advanced geotechnical engineering applications, such as shale gas extraction, CO2 geological sequestration, and geological radioactive waste storage, often involve various types of shales located at significant depths. Shales exhibit mechanical properties ...
Oxford2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.