Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Silicon has been, and continues to be, the material support of integrated circuit (IC) technology-the enabling tool of one of the most impressive technological, industrial and social revolution of mankind. Silicon (both in monocrystalline and polycrystalli ...
Nanocomposites based on an organic polymer and inorganic nanocrystals (NCs) represent a class of high impact functional materials able to convey the unique size and shape dependent properties of nano-objects to highly processable resists.[1] In this work, ...
The increase of components density in advanced microelectronics is practically dictated by the device size and the achievable pitch between the devices. Scaling down dimensions of devices and progress in the circuit design allowed following Moore's law dur ...
A detailed investigation and characterization of the local properties of individual nanoscopic structures is of great importance for the understanding of novel physical phenomena at the nanoscale as well as for the assessment of their possible use in futur ...
Semiconductor nanowires are an emerging class of materials with great potential for applications in future electronic devices. The small footprint and the large charge-carrier mobilities of nanowires make them potentially useful for applications with high- ...
This thesis presents the fabrication and characterization of organic thin film transistors (TFTs) on flexible polymer substrates and the development of compliant stencil lithography to significantly improve the patterning resolution on full-wafer scale. Po ...
We present a parallel, full wafer technique for deposition of catalyst on released scanning probe bodies for the growth of individual high aspect-ratio Si nanowire tips. 1-D probes are necessary for imaging high aspect-ratio nano-patterns, such as deep and ...
In this paper, we report on the integration technique and fabrication of a scanning probe interrogating the location of charges and their tracks inside quantum devices. Our unique approach is to pattern the charged sensor into a high topography micromechan ...
Nanocomposites based on an organic polymer and inorganic nanocrystals (NCs) represent a class of high impact functional materials able to convey the unique size and shape dependent properties of nano-objects to highly processable resists.[1] In this work, ...
This paper presents the state-of-the-art of nanostencil as a direct and local patterning method. Stencil lithography is a high-resolution shadow mask technique that allows structuring surfaces without using the harsh process steps typically associated with ...