Publication

All‐Fabric Wearable Electroadhesive Clutch

Abstract

A lightweight, textile fabricated, haptic device consisting of an electrostatic adhesive clutch is introduced, which can constrain body movement when activated at low power (≈1 mW). The clutch electrodes are composite structures, prepared by coating copper‐plated polyester fabric with thin films of high‐κ dielectric ink. When voltage is applied across a pair of overlapping electrodes, the charge separation created between the overlapped surfaces gives rise to adhesive forces that resist tensile loads along the electrode surface. The clutch is arranged in parallel with a sheet of knitted fabric, which exhibits low‐stiffness spring‐like characteristics, thus decreasing load resistance when the clutch is deactivated. Mechanical tests are carried out to assess the dependency on scaling and loading rate at different voltages. The load‐bearing capacity of the device is experimentally shown to sustain a 10 kg load for a clutch pair with 120 × 70 mm2 dielectric overlap, when activated at 400 V. Current‐dependent charging and discharging times that can be as low as 15 ms are presented. To exemplify its pertinence in wearable applications, the device is used as an elbow joint constraint, exhibiting its conformability to curvatures and suitability for skin‐mounted applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.