Publication

Pumps running as turbines for energy recovery in water supply systems

Abstract

Pressurised water supply systems are infrastructures that offer a potential for energy recovery in locations where these systems operate with an excessive pressure. The integration of micro hydropower plants for energy recovery is a challenge, as these systems feature a significant daily discharge variation, which limits the domain of operation of the power plants. Pumps running as turbines (PATs) are turbomachines suitable for this application, despite facing two issues. Firstly, PATs are characterised by a sharp efficiency decrease when operating far from the best operating point. Secondly, the characteristic curves of the turbine mode are not provided by pump manufacturers, which hinders the implementation of PAT power plants. The present thesis is based on the experimental investigation of the variable speed operation of centrifugal pumps used as turbines aiming at optimising the energy recovered. A new methodology is developed, firstly, to estimate the performance of the turbine mode (flow rate, specific energy, power and efficiency) and, secondly, to model the variable speed hill chart performance of PATs. The research procedure includes the experimental investigation of the characteristic curves of the PATs, the experimental investigation of the unstable phenomena experienced by the PATs and, finally, the development of an empirical model for predicting the PATs performance. Firstly, the variable speed operation of PATs is experimentally investigated. Data are collected for three centrifugal pumps with different unit specific speed values to characterise the characteristic curves of the turbine mode and of the extended operation in the generating mode. Measurements of the water temperature, the discharge, the pressure, the torque and the rotational speed are performed to determine the hydraulic and the mechanical performance of these PATs. Secondly, the pressure fluctuations developed during the part load and the full load operation of PATs are investigated. Data collected include the pressure measurements in the high and in the low pressure sections of the PAT and the high speed flow visualisation in the PAT draft tube. The spectral analysis of the pressure measurements and the image processing of the flow visualisation highlight the dynamics of a cavitation precessing vortex rope that develops in the PAT draft tube. Thirdly, a new empirical model is developed to estimate the characteristic curve of PATs and to model the variable speed hill chart of the PAT. The methodology is based on the Hermite polynomial chaos expansion (PCE), which propagates the known characteristic curves obtained during the experimental tests, providing a surrogate function for predicting the characteristic curves of a given PAT, inside the range of unit specific speed values tested. The PCE is, afterwards, applied for modelling the variable speed hill chart of the PAT. Obtained results provide an insight on the variable speed operation of PATs with respect to the turbine mode, the extended operation, the possibility of the development of pressure fluctuation instabilities and, finally, the modelling of the variable speed hill chart performance for a given PAT. The hill chart model is described by a continuous polynomial function, which can be used to optimise the design and the operation of PAT micro hydropower plants, aiming at maximising the energy recovered and at avoiding potential instabilities caused by the part load and the full load operation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Load-following power plant
A load-following power plant, regarded as producing mid-merit or mid-priced electricity, is a power plant that adjusts its power output as demand for electricity fluctuates throughout the day. Load-following plants are typically in between base load and peaking power plants in efficiency, speed of start-up and shut-down, construction cost, cost of electricity and capacity factor. Base load power plants are dispatchable plants that tend to operate at maximum output.
Pumped-storage hydroelectricity
Pumped-storage hydroelectricity (PSH), or pumped hydroelectric energy storage (PHES), is a type of hydroelectric energy storage used by electric power systems for load balancing. The method stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation. Low-cost surplus off-peak electric power is typically used to run the pumps. During periods of high electrical demand, the stored water is released through turbines to produce electric power.
Turbine
A turbine ('tɜːrbaɪn or 'tɜːrbɪn) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical power when combined with a generator. A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor.
Show more
Related publications (72)

Fiber pumps for wearable fluidic systems

Herbert Shea, Michael James Henry Smith, Vito Cacucciolo

Incorporating pressurized fluidic circuits into textiles can enable muscular support, thermoregulation, and haptic feedback in a convenient wearable form factor. However, conventional rigid pumps, with their associated noise and vibration, are unsuitable f ...
2023

Numerical simulations of Pelton turbine flow to predict large head variation influence

François Avellan, Cécile Münch-Alligné, Siamak Alimirzazadeh, Steve Crettenand

In the framework of the new feed-in-tariff system in Switzerland for Small Hydropower Plants (SHP), the aim of the SmallFLEX project, led by HES-SO Valais and performed in collaboration with EPFL, WSL, EAWAG, PVE, and FMV, is to show how SHP can provide wi ...
IOP PUBLISHING LTD2021

DuoTurbo: Implementation of a Counter-Rotating Hydroturbine for Energy Recovery in Drinking Water Networks

François Avellan, Cécile Münch-Alligné, Vlad Hasmatuchi, Daniel Biner, Samuel Chevailler

To enhance the sustainability of water supply systems, the development of new technologies for micro scale hydropower remains an active field of research. The present paper deals with the implementation of a new micro-hydroelectric system for drinking wate ...
2021
Show more
Related MOOCs (24)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.