Energy and Reserve Dispatch with Distributionally Robust Joint Chance Constraints
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work, we consider the problem of estimating the probability distribution, the quantile or the conditional expectation above the quantile, the so called conditional-value-at-risk, of output quantities of complex random differential models by the MLM ...
We introduce a universal framework for mean-covariance robust risk measurement and portfolio optimization. We model uncertainty in terms of the Gelbrich distance on the mean-covariance space, along with prior structural information about the population dis ...
Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affec ...
We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be exp ...
Higher-order asymptotics provide accurate approximations for use in parametric statistical modelling. In this thesis, we investigate using higher-order approximations in two-specific settings, with a particular emphasis on the tangent exponential model. Th ...
This work aims to study the effects of wind uncertainties in civil engineering structural design. Optimising the design of a structure for safety or operability without factoring in these uncertainties can result in a design that is not robust to these per ...
We tackle safe trajectory planning under Gaussian mixture model (GMM) uncertainty. Specifically, we use a GMM to model the multimodal behaviors of obstacles' uncertain states. Then, we develop a mixed-integer conic approximation to the chance-constrained t ...
In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...
Many decision problems in science, engineering, and economics are affected by uncertainty, which is typically modeled by a random variable governed by an unknown probability distribution. For many practical applications, the probability distribution is onl ...
This thesis work focuses on optimal control of partial differential equations (PDEs) with uncertain parameters, treated as a random variables. In particular, we assume that the random parameters are not observable and look for a deterministic control which ...