Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator L\documentclass[12pt]{ ...
Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, ca ...
The recent developments of deep learning cover a wide variety of tasks such as image classification, text translation, playing go, and folding proteins.All these successful methods depend on a gradient-based learning algorithm to train a model on massive a ...
Pulmonary nodules and masses are crucial imaging features in lung cancer screening that require careful management in clinical diagnosis. Despite the success of deep learning-based medical image segmentation, the robust performance on various sizes of lesi ...
Aerodynamic shape optimization (ASO) is a key technique in aerodynamic designs, aimed at enhancing an object’s physical performance while adhering to specific constraints. Traditional parameterization methods for ASO often require substantial manual tuning ...
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have been widely used and have achieved tremendous success in visual recognition. Unfortunately, deploying deep models is challenging because of their huge model s ...
This report presents a study on the development and application of a Region-based Convolutional Neural Network, Faster RCNN and a more complex one, TransVOD, to locate solar coronal jets using data from the Solar Dynamic Observatory (SDO). The study focus ...
Flow-based generative models have become an important class of unsupervised learning approaches. In this work, we incorporate the key ideas of renormalization group (RG) and sparse prior distribution to design a hierarchical flow-based generative model, RG ...
Advances in scanning systems have enabled the digitization of pathology slides into Whole-Slide Images (WSIs), opening up opportunities to develop Computational Pathology (CompPath) methods for computer-aided cancer diagnosis and prognosis. CompPath has be ...