This letter introduces a reconfigurable planar square-coil-shaped inductor exploiting as the tuning mechanism the insulator-to-metal transition (IMT) of a vanadium dioxide (VO2) switch placed in the interwinding space in an unprecedented manner. The VO2 thin-film bar-shaped switch is electrically connected to provide a temperature-selective current path that effectively short-circuits a part of the inductor coil changing the inductance of the device. The inductor is fabricated on a high-resistivity silicon substrate using a CMOS-compatible 2-D planar low-cost technology (four photolithography steps). The design, optimized to work in the 4-10-GHz range, provides measured inductances at 5 GHz of 2.1 nH at 20 degrees C and 1.35 nH at 100 degrees C with good stability in the entire frequency band (4-10 GHz) resulting in a reconfiguration ratio of 55%. The quality factor (Q-factor) at 7 GHz is about 8 at 20 degrees C (off state) and 3 at 100 degrees C (on state), outperforming tunable inductors employing VO2 with 2 orders of magnitude higher Q-factor and a smaller footprint. This represents an advancement for the state of the art of 2-D CMOS-compatible inductors in the considered frequency range.
Duccio Testa, Ambrine Douhane, Marcus Cemes
Edoardo Charbon, Pasquale Scarlino, Fabrizio Minganti, Simone Frasca, Marco Scigliuzzo, Vincent Jean Yves Jouanny, Fabian Oppliger, Roberto Musio