Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Since the origins of DNA-based life, the enzyme ribonucleotide reductase (RNR) has spurred proliferation because of its rate-limiting role in de novo deoxynucleoside-triphosphate (dNTP) biosynthesis. Paradoxically, the large subunit, RNR-alpha, of this obligatory two-component complex in mammals plays a context-specific antiproliferative role. There is little explanation for this dichotomy. Here, we show that RNR-alpha has a previously unrecognized DNA-replication inhibition function, leading to growth retardation. This underappreciated biological activity functions in the nucleus, where RNR-alpha interacts with ZRANB3. This process suppresses ZRANB3's function in unstressed cells, which we show to promote DNA synthesis. This nonreductase function of RNR-alpha is promoted by RNR-alpha hexamerization-induced by a natural and synthetic nucleotide of dA/ClF/CLA/FLU-which elicits rapid RNR-alpha nuclear import. The newly discovered nuclear signaling axis is a primary defense against elevated or imbalanced dNTP pools that can exert mutagenic effects irrespective of the cell cycle.
Martinus Gijs, Thomas Lehnert, Lin Sun