Hyperpolarized C-13 Magnetic Resonance Spectroscopy Reveals the Rate-Limiting Role of the Blood-Brain Barrier in the Cerebral Uptake and Metabolism of L-Lactate in Vivo
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Cerebral energy metabolism is a highly compartmentalized and complex process in which transcellular trafficking of metabolites plays a pivotal role. Over the past decade, a role for lactate in fueling the energetic requirements of neurons has emerged. Furt ...
Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorpo ...
BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable ...
Mammalian cells represent the most widely used host system for the industrial production of recombinant therapeutic proteins. In order to increase productivity, chemically defined media are often used and optimized to provide the cells with the necessary n ...
Astrocytes have various important roles in brain physiology. To further elucidate the details of astrocytic functions under normal and pathological states, astrocyte-specific measurements are mandatory. For studying brain energy metabolism, the use of the ...
Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscio ...
A critical issue in brain energy metabolism is whether lactate produced within the brain by astrocytes is taken up and metabolized by neurons upon activation. Although there is ample evidence that neurons can efficiently use lactate as an energy substrate, ...
A tight coupling exists between synaptic activity and glucose utilization by astrocytes. Metabolic cooperation between neurons and astrocytes mediates this coupling. During synaptic activation, glutamate that is released in the synaptic cleft as a neurotra ...
To date, functional 1H NMR spectroscopy has been utilized to report the time courses of few metabolites, primarily lactate. Benefiting from the sensitivity offered by ultra-high magnetic field (7 T), the concentrations of 17 metabolites were measured in th ...
Water homeostasis in the brain is of central physiologic and clinical importance. Neuronal activity and ion water homeostasis are inextricably coupled. For example, the clearance of K+ from areas of high neuronal activity is associated with a concomitant w ...