Automated construction of symmetrized Wannier-like tight-binding models from ab initio calculations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis uses femtosecond laser spectroscopy in studying strong correlation in condensed matters that are pertinent to future technology: a wide bandgap perovskite and a quantum material, with the employment of ultrafast time-resolved spectroscopy in th ...
On-surface synthesis has become a prominent method for growing low-dimensional carbon-based nanomaterials on metal surfaces. However, the necessity of decoupling organic nanostructures from metal substrates to exploit their properties requires either trans ...
Topological materials have been a main focus of studies in the past decade due to their protected properties that can be exploited for the fabrication of new devices. Among them, Weyl semimetals are a class of topological semimetals with nontrivial linear ...
Topological Weyl semimetals represent a novel class of nontrivial materials, where band crossings with linear dispersions take place at generic momenta across reciprocal space. These crossings give rise to low -energy properties akin to those of Weyl fermi ...
Extensive machine-learning-assisted research has been dedicated to predicting band gaps for perovskites, driven by their immense potential in photovoltaics. Yet, the effectiveness is often hampered by the lack of high-quality band gap data sets, particular ...
Charge separation processes in organic semiconductors play a pivotal role in diverse applications ranging from photovoltaics to photocatalysis. Understanding these mechanisms, particularly the role of hybrid charge-transfer (CT) states, is essential for ad ...
We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particula ...
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...
This research presents a comprehensive comparative analysis of the passivation kinetics of OFP-Cu and OF-Cu in simulated repository electrolyte. The study employs a range of techniques, including potentiodynamic polarization, multi-step potentiostatic pola ...