Time reversal and symmetries of time correlation functions
Related publications (54)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
High symmetry epitaxial quantum dots (QDs) with three or more symmetry planes provide a very promising route for the generation of entangled photons for quantum information applications. The great challenge to fabricate nanoscopic high symmetry QDs is furt ...
We aim at providing a global perspective on electromagnetic nonreciprocity and clarifying confusions that arose in recent developments of the field. We provide a general definition of nonreciprocity and classify nonreciprocal systems according to their lin ...
We derive the quantum analogues of some recently discovered symmetry relations for time correlation functions in systems subject to a constant magnetic field. The symmetry relations deal with the effect of time reversal and do not requireas in the formulat ...
Antihydrogen, a positron bound to an antiproton, is the simplest anti-atom. Its structure and properties are expected to mirror those of the hydrogen atom. Prospects for precision comparisons of the two, as tests of fundamental symmetries, are driving a vi ...
We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied ...
The time-reversal properties of charged systems in a constant external magnetic field are reconsidered in this paper. We show that the evolution equations of the system are invariant under a new symmetry operation that implies a new signature property for ...
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers(1-3) and the measurement(4) of the zero-field ground-state splitting at the level of seven parts in 10(13) are important achievements of mid-twentieth-century physics. The wor ...
In vortex-like spin arrangements, multiple spins can combine into emergent multipole moments. Such multipole moments have broken space-inversion and time-reversal symmetries, and can therefore exhibit linear magnetoelectric (ME) activity. Three types of su ...
We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincare-invariant theory that spontaneously breaks Lorentz boosts while preserving ...
We defend the Fock-space Hamiltonian truncation method, which allows us to calculate numerically the spectrum of strongly coupled quantum field theories, by putting them in a finite volume and imposing a UV cutoff. The accuracy of the method is improved vi ...