Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Optical microresonators with high quality (Q) factors are essential to a wide range of integrated photonic devices. Steady efforts have been directed towards increasing microresonator Q factors across a variety of platforms. With success in reducing microf ...
The ability to control and manipulate light is a fundamental aspect that is at the very core of the development of integrated photonic circuits. It is desirable to achieve such control down to a scale that is comparable to or smaller than the wavelength of ...
Maxwell's equations govern light propagation and its interaction with matter. Therefore, the solution of Maxwell's equations using computational electromagnetic simulations plays a critical role in understanding light-matter interaction and designing optic ...
Recent developments of self-injection locking of a DFB laser with an ultra-high Q resonator have enabled unprecedented low-noise performance of coherent light sources. We review the demonstration of ultra-narrow linewidth laser and microcombs in integrated ...
IEEE2021
Today's standard fabrication processes are just capable of manufacturing slab of photonic and phononic crystals, so an efficient method for analysis of these crystals is indispensable. Plane wave expansion (PWE) as a widely used method in studying photonic ...
Recently, there has been significant interest in using dielectric nanocavities for the controlled scattering of light, owing to the diverse electromagnetic modes that they support. For plasmonic systems, electron energy-loss spectroscopy (EELS) is now an e ...
Recent developments in chip-based nonlinear photonics offer the tantalizing prospect of realizing many applications that can use optical frequency comb devices that have form factors smaller than 1 cm(3) and that require less than 1 W of power. A key featu ...
NATURE PUBLISHING GROUP2019
, , , , , , ,
Low-loss photonic integrated circuits and microresonators have enabled a wide range of applications, such as narrow-linewidth lasers and chip-scale frequency combs. To translate these into a widespread technology, attaining ultralow optical losses with est ...
NATURE RESEARCH2021
, , , , ,
Multi-mode waveguides are ubiquitously used in integrated photonics. Although interaction among different spatial waveguide eigenmodes can induce novel nonlinear phenomena, spatial mode interaction is typically undesired. Adiabatic bends, such as Euler ben ...
III-nitride waveguides featuring AlInN claddings and GaN/AlGaN quantum wells (QWs) offer promising perspectives for applications in many fields of short-wavelength photonics. Thanks to their nearly lattice-matched nature, these structures exhibit an excell ...