Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Understanding the interplay between protein function and dynamics is currently one of the fundamental challenges of physical biology. Recently, a method using variable temperature solid-state nuclear magnetic resonance relaxation measurements has been proposed for the simultaneous measurement of 12 different activation energies reporting on distinct dynamic modes in the protein GB1. Here, we extend this approach to measure relaxation at multiple magnetic field strengths, allowing us to better constrain the motional models and to simultaneously evaluate the robustness and physical basis of the method. The data reveal backbone and side-chain motions, exhibiting low- and high-energy modes with temperature coefficients around 5 and 25 kJ.mol(-1). The results are compared to variable temperature molecular dynamics simulation of the crystal lattice, providing further support for the interpretation of the experimental data in terms of molecular motion.
Marcel Drabbels, Ulrich Lorenz, Sarah Victoria Barrass, Oliver Florian Harder