Two-fluid solutions for Langmuir probes in collisionless and isothermal plasma, over all space and bias potential
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In fluid mechanics, turbulence can occur in very simple flow geometries, for Newtonian fluids and without the need for additional flow conditions such as temperature gradients or chemical reactions. In standard cases, intuitive assumptions on the physics o ...
This work is concerned with a numerical simulation of the thermal behaviour of an electrolysis cell for the production of the aluminium. Aluminium is produced by an electrolytic reduction of alumina dissolved in a bath of molten cryolite. In this reduction ...
The aim of this work is to provide mathematically sound and computationally effective tools for the numerical simulation of the interaction between fluid and structures as occurring, for instance, in the simulation of the human cardiovascular system. This ...
This work is focused on the development of a geometrical multiscale framework for modeling the human cardiovascular system. This approach is designed to deal with different geometrical and mathematical models at the same time, without any preliminary hypot ...
In this work we aim at the description, study and numerical investigation of the fluid-structure interaction (FSI) problem applied to hemodynamics. The FSI model considered consists of the Navier-Stokes equations on moving domains modeling blood as a visco ...
We present non-linear self-consistent global simulations of the SOL plasma dynamics using the Global Braginskii Solver (GBS) code. The code solves on the drift-reduced Braginkii equations, with cold ions. Studied originally for the simulation of the Simple ...
We present a new model reduction technique for steady fluid-structure interaction problems. When the fluid domain deformation is suitably parametrized, the coupling conditions between the fluid and structure can be formulated in the low-dimensional space o ...
Society for Industrial and Applied Mathematics2012
The Monge problem [23], [27], as reformulated by Kantorovich [19], [20] is that of the transportation, at a minimum "cost", of a given mass distribu- tion from an initial to a final position during a given time interval. It is an optimal transport problem ...
In this work we focus on the modeling and numerical simulation of the fluid-structure interaction mechanism in vascular dynamics. We first propose a simple membrane model to describe the deformation of the arterial wall, which is derived from the Koiter sh ...
We elaborate in this thesis the numerical simulation of the fluid-structure interaction by the spectral element method. To this end we consider the Navier-Stokes equations for a viscous Newtonian incompressible fluid with an elastic solid the movement of w ...