Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Rod-shaped bacteria typically grow first via sporadic and dispersed elongation along their lateral walls and then via a combination of zonal elongation and constriction at the division site to form the poles of daughter cells. Although constriction comprises up to half of the cell cycle, its impact on cell size control and homeostasis has rarely been considered. To reveal the roles of cell elongation and constriction in bacterial size regulation during cell division, we captured the shape dynamics of Caulobacter crescentus with time-lapse structured illumination microscopy and used molecular markers as cell-cycle landmarks. We perturbed the constriction rate using a hyperconstriction mutant or fosfomycin ([(2R,3S)-3-methyloxiran-2-yl]phosphonic acid) inhibition. We report that the constriction rate contributes to both size control and homeostasis, by determining elongation during constriction and by compensating for variation in pre-constriction elongation on a single-cell basis.
Emrah Bostan, Pascal Damian Odermatt
Georg Fantner, John McKinney, Haig Alexander Eskandarian, Mélanie Thérèse Marie Hannebelle, Chiara Toniolo, Joëlle Xiao Yuan Ven, Gaëlle Madeleine Vuaridel