Trypanosoma brucei UMSBP2 is a single-stranded telomeric DNA binding protein essential for chromosome end protection
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
DNA replication in bacteria takes place on highly compacted chromosomes, where segregation, transcription, and repair must occur simultaneously. Within this dynamic environment, colocalization of sister replisomes has been observed in many bacterial specie ...
Telomeres are nucleoprotein structures at the ends of linear chromosomes, being essential for the maintenance of genomic integrity. Telomeres have a unique structure which distinguishes chromosome termini from DNA damage sites. Shelterin complexes are the ...
Telomeres are the nucleoprotein structures found at the ends of linear chromosomes. They ensure that the termini of chromosomes are not inappropriately recognized as sites of DNA damage, and are therefore crucial for genome stability. In spite of the heter ...
Difficulties to replicate telomeres - the ends of our chromosomes - can cause telomere shortening andgenome instability. These difficulties are due to the repetitive DNA sequence and distinct structures at telomeresthat challenge the semi-conservative DNA ...
It has become apparent that difficulties to replicate telomeres concern not only the very ends of eukaryotic chromosomes. The challenges already start when the replication fork enters the telomeric repeats. The obstacles encountered consist mainly of nonca ...
The local physical properties - such as shape and flexibility - of the DNA double-helix is today widely believed to be influenced by nucleic acid sequence in a non-trivial way. Furthermore, there is strong evidence that these properties play a role in many ...
DNA-binding proteins physically interact with the DNA and directly affect genomic functions. The eukaryotic genome is compacted into chromatin, limiting the DNA access to nuclear factors. In this Ph.D. thesis, I explored the dynamic mechanisms, that allow ...
The mutational spectrum of the mitochondrial DNA (mtDNA) does not resemble any of the known mutational signatures of the nuclear genome and variation in mtDNA mutational spectra between different organisms is still incomprehensible. Since mitochondria are ...
Nucleic acid sensing through pattern recognition receptors is critical for immune recognition of microbial infections. Microbial DNA is frequently methylated at the N-6 position of adenines (m6A), a modification that is rare in mammalian host DNA. We show ...
ROYAL SOC2021
, , , ,
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the sem ...