A Compressed Sensing Approach for Distribution Matching
Related publications (43)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Sparsity has recently been introduced in cosmology for weak-lensing and cosmic microwave background (CMB) data analysis for different applications such as denoising, component separation, or inpainting (i.e., filling the missing data or the mask). Although ...
In causal inference the effect of confounding may be controlled using regression adjustment in an outcome model, propensity score adjustment, inverse probability of treatment weighting or a combination of these. Approaches based on modelling the treatment ...
Frequentist and Bayesian approaches to statistics have long been seen as incompatible, but recent work has been done to try and unify them (Bayarri and Berger, 2004; Efron, 2005). Empirical Bayes, approximate Bayesian analysis, and the matching prior appro ...
In this technical report, we propose a methodology to use the communication network infra- structure, in particular WiFi traces, to detect the sequence of activity episodes visited by pedestrians. Due to the poor quality of WiFi localization, a probabilist ...
Processing of electroencephalographic (EEG) signals has mostly focused on analysing correlates that are time-locked to an observable event. However, when the signal is acquired in less controlled environment, like in the context of a brain-computer interfa ...
In this paper, we propose a methodology to use the communication network infrastructure, in particular WiFi traces, to detect the sequence of activity episodes visited by pedestrians. Due to the poor quality of WiFi localization, a probabilistic method is ...
Bilinear models of count data with Poisson distribution are popular in applications such as matrix factorization for recommendation systems, modeling of receptive fields of sensory neurons, and modeling of neural-spike trains. Bayesian inference in such mo ...
The mobility patterns of the population are the basis of most analyses in the transportation field. We aim to extract these patterns from smartphone traces. The following thesis proposes a Bayesian approach based on smartphone location records, land use in ...
We examine the robustness and privacy properties of Bayesian inference under assumptions on the prior, but without any modifications to the Bayesian framework. First, we generalise the concept of differential privacy to arbitrary dataset distances, outcome ...
A fast mean field variational Bayes (MFVB) approach to nonparametric regression when the predictors are subject to classical measurement error is investigated. It is shown that the use of such technology to the measurement error setting achieves reasonable ...