Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The early Universe presented a star formation environment that was almost devoid of heavy elements. The lowest metallicity stars thus provide a unique window into the earliest Galactic stages, but are exceedingly rare and difficult to find. Here, we present the discovery of an ultra-metal-poor star, Pristine(-)221.8781+9.7844, using narrow-band Ca H&K photometry from the Pristine survey. Follow-up medium- and high-resolution spectroscopy confirms the ultra-metal-poor nature of Pristine(-)221.8781+9.7844 ([Fe/H] = -4.66 +/- 0.13 in 1D LTE) with an enhancement of 0.3-0.4 dex in alpha-elements relative to Fe, and an unusually low carbon abundance. We derive an upper limit of A(C) = 5.6, well below typical A(C) values for such ultra-metal-poor stars. This makes Pristine (-)221.8781+9.7844 one of the most metal-poor stars; in fact, it is very similar to the most metal-poor star known (SDSS J102915+172927). The existence of a class of ultra-metal-poor stars with low(er) carbon abundances suggest that there must have been several formation channels in the early Universe through which long-lived, low-mass stars were formed.
Pascale Jablonka, Yves Revaz, Mahsa Sanati