Publication

A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation

Abstract

Models for cardiac mechanics require an activation mechanism properly representing the stress-strain relations in the contracting myocardium. In this paper, we propose a new activation model that accounts for the transmural heterogeneities observed in myocardial strain measurements. In order to take the anisotropy of the active mechanics into account, our model is based on an active strain formulation. Thanks to multiplicative decomposition of the deformation gradient tensor, in this formulation, the active strains orthogonal to the fibers can be naturally described. We compare the results of our novel formulation against different anisotropic models of the active contraction of the cardiac muscle, as well as against experimental data available in the literature. We show that with the currently available models, the strain distributions are not in agreement with the reported experimental measurements. Conversely, we show that our new transmurally heterogeneous orthotropic activation model improves the accuracy of shear strains related to in-plane rotations and torsion.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.