Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In order to improve their power efficiency and computational capacity, modern servers are adopting hardware accelerators, especially GPUs. Modern analytical DMBS engines have been highly optimized for multi-core multi-CPU query execution, but lack the necessary abstractions to support concurrent hardware-conscious query execution over multiple heterogeneous devices and, thus, are unable to take full advantage of the available accelerators. In this work, we present a Heterogeneity-conscious Analytical query Processing Engine (HAPE), a hardware-conscious analytical engines that targets efficient concurrent multi-CPU multi-GPU query execution. HAPE decomposes heterogeneous query execution into i) efficient single-device and ii) concurrent multi-device query execution. It uses hardware-conscious algorithms designed for single-device execution and combines them into efficient intra-device hardware-conscious execution modules, via code generation. HAPE combines these modules to achieve concurrent multi-device execution by handling data and control transfers. We validate our design by building a prototype and evaluate its performance on a co-processing radix-join and TPC-H queries. We show that it achieves up to 10x and 3.5x speed-up on the join against CPU and GPU alternatives and 1.6x-8x against state-of-the-art CPU- and GPU-based commercial DBMS on the queries.
David Atienza Alonso, Alexandre Sébastien Julien Levisse, Miguel Peon Quiros, Simone Machetti, Pasquale Davide Schiavone
Aurélien François Gilbert Bloch
David Atienza Alonso, Miguel Peon Quiros, Benoît Walter Denkinger