Status Status of the final design of the EC UPP launcher
Related publications (43)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Progress, since the ITER Physics Basis publication (ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137-2664), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is ...
Energy is essential for human existence and our future depends on plentiful and accessible sources of energy. The world population is fast growing and the average energy used per capita increases. One of the greatest challenges for human beings is that of ...
In the search of a fusion reactor using magnetic confinement of toroidal plasmas, many important plasma performance parameters directly depend on the shape of the plasma cross-section. The unique shaping capability of the TCV tokamak ("Tokamak à Configurat ...
Four of the 16 ITER upper port plugs will be devoted to electron cyclotron resonance heating (ECRH) in order to control the magneto-hydrodynamic (MHD) instabilities. In order to achieve the stabilisation of the neoclassical tearing modes (NTM) and sawtooth ...
The deployment of high power radio frequency waves in the ion cyclotron range (ICRF) constitutes an important operational facility in many plasma devices, including ITER. Any charged particle describes a helical motion around a given magnetic field line, t ...
The need of durable, economically acceptable and safe energy sources continues to stimulate studies in a field of thermonuclear fusion. The most successful solution for controlled magnetic fusion is the tokamak. The improvement of tokamak performance depen ...
The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the fra ...
Electron cyclotron resonance heating (ECRH) of high-density tokamak plasmas is limited because of reflections of the waves at so-called wave cutoffs. Electron Bernstein wave (EBW) heating (EBWH) via a double mode conversion process from ordinary (O)-mode, ...
The ability of ITER electron cyclotron (EC) wave launchers to drive localized current at various plasma locations is analyzed by means of beam-tracing codes, looking at extended physics application of EC current drive in ITER and at possible synergy betwee ...
The Tokamak `a Configuration Variable , TCV, addresses scientific questions to improve our understanding of magnetically confined plasmas and our ability to control them in ITER relevant scenarios, and explores avenues to improve the plasma performance on ...