Publication

Learning Task Priorities from Demonstrations

Sylvain Calinon
2019
Journal paper
Abstract

As humanoid robots become increasingly popular, learning and control algorithms must take into account the new constraints and challenges inherent to these platforms, if we aim to fully exploit their potential. One of the most prominent of such aspects is their bimanual structure. Most research on learning bimanual skills has focused on the coordination between end-effectors, exploiting operational space formulations. However, motion patterns in bimanual scenarios are not exclusive to operational space, also occurring at the joint level. Moreover, bimanual operation offers the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. Here we address the aforementioned problems from a robot Learning from Demonstration perspective. In particular, we present an extension of the Task-Parameterized Gaussian Mixture Model (TP-GMM) employing operators that allow for tackling such problems. The presented approach – despite the focus on bimanual operation – can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: (i) two different bimanual tasks with the COMAN and WALK-MAN humanoids that either require the consideration of operational and configuration space movements or the prioritization of tasks and (ii) a loco-manipulation scenario with the Centauro robot in simulation, where the priority of the floating base position needs to be learned, showing that the approach can be exploited in generic task prioritization scenarios.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.