Enhanced Iron Solubility at Low pH in Global Aerosols
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
High levels of ammonia (NH3) have been suggested to elevate ambient particle pH levels to near neutral acidity (pH = 7), a condition that promotes rapid SO2 oxidation by NO2 to form aerosol sulfate concentration consistent with "London fog" levels. This po ...
The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natur ...
The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensati ...
This study reports the first application of Fe-citrate-based photo-Fenton chemistry for the inactivation of Escherichia coil. Promising results of bacterial inactivation at near-neutral and alkaline pH conditions were obtained, while using low iron concent ...
Dissolved oxygen in the mid-depth tropical Pacific Ocean has declined in the past several decades. The resulting expansion of the oxygen minimum zone has consequences for the region's ecosystem and biogeochemical cycles, but the causes of the oxygen declin ...
It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputabl ...
American Association for the Advancement of Science2017
Acidity (pH) plays a key role in the physical and chemical behavior of PM2.5. However, understanding of how specific PM sources impact aerosol pH is rarely considered. Performing source apportionment of PM2.5 allows a unique link of sources pH of aerosol f ...
Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmosphe ...
Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to chara ...
As human impact have been increasing strongly over the last decades, it is crucial to distinguish human-induced dust sources from natural ones in order to define the boundary of a newly proposed epoch -the Anthropocene. Here, we track anthropogenic signatu ...