**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# DeepSuccess - Predict the Success of Tech Startups

Abstract

Many interesting applications emerged with the increasing popularity of deep learning. This project explored natural language processing and visualization techniques as well as two neural network architectures to classify ICOs. The first network focused on the ICOs white-paper with a bi-directional LSTM attention network. The second targeted the ICOs website structure with a Graph neural network as well as page topics with Latent Dirichlet Analysis.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (6)

Loading

Loading

Loading

Related concepts (5)

Neural network

A neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neur

Deep learning

Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the

Recurrent neural network

A recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional f

For a long time, natural language processing (NLP) has relied on generative models with task specific and manually engineered features. Recently, there has been a resurgence of interest for neural networks in the machine learning community, obtaining state-of-the-art results in various fields such as computer vision, speech processing and natural language processing. The central idea behind these approaches is to learn features and models simultaneously, in an end-to-end manner, and making as few assumptions as possible. In NLP, word embeddings, mapping words in a dictionary on a continuous low-dimensional vector space, have proven to be very efficient for a large variety of tasks while requiring almost no a-priori linguistic assumptions. In this thesis, we investigate continuous representations of segments in a sentence for the purpose of solving NLP tasks that involve complex sentence-level relationships. Our sequence modelling approach is based on neural networks and takes advantage of word embeddings. A first approach models words in context in the form of continuous vector representations which are used to solve the task of interest. With the use of a compositional procedure, allowing arbitrarily-sized segments to be compressed onto continuous vectors, the model is able to consider long-range word dependencies as well. We first validate our approach on the task of bilingual word alignment, consisting in finding word correspondences between a sentence in two different languages. Source and target words in context are modeled using convolutional neural networks, obtaining representations that are later used to compute alignment scores. An aggregation operation enables unsupervised training for this task. We show that our model outperforms a standard generative model. The model above is extended to tackle phrase prediction tasks where phrases rather than single words are to be tagged. These tasks have been typically cast as classic word tagging problems using special tagging schemes to identify the segments boundaries. The proposed neural model focuses on learning fixed-size representations of arbitrarily-sized chunks of words that are used to solve the tagging task. A compositional operation is introduced in this work for the purpose of computing these representations. We demonstrate the viability of the proposed representations by evaluating the approach on the multiwork expression tagging task. The remainder of this thesis addresses the task of syntactic constituency parsing which, as opposed to the above tasks, aims at producing a structured output, in the form of a tree, of an input sentence. Syntactic parsing is cast as multiple phrase prediction problems that are solved recursively in a greedy manner. An extension using recursive compositional vector representations, allowing for lexical infor- mation to be propagated from early stages, is explored as well. This approach is evaluated on a standard corpus obtaining performance comparable to generative models with much shorter computation time. Finally, morphological tags are included as additional features, using a similar composition procedure, to improve the parsing performance for morphologically rich languages. State-of-the-art results were obtained for these task and languages.

In this thesis, we propose new algorithms to solve inverse problems in the context of biomedical images. Due to ill-posedness, solving these problems require some prior knowledge of the statistics of the underlying images. The traditional algorithms, in the field, assume prior knowledge related to smoothness or sparsity of these images. Recently, they have been outperformed by the second generation algorithms which harness the power of neural networks to learn required statistics from training data. Even more recently, last generation deep-learning-based methods have emerged which require neither training nor training data. This thesis devises algorithms which progress through these generations. It extends these generations to novel formulations and applications while bringing more robustness. In parallel, it also progresses in terms of complexity, from proposing algorithms for problems with 1D data and an exact known forward model to the ones with 4D data and an unknown parametric forward model. We introduce five main contributions. The last three of them propose deep-learning-based latest-generation algorithms that require no prior training. 1) We develop algorithms to solve the continuous-domain formulation of inverse problems with both classical Tikhonov and total-variation regularizations. We formalize the problems, characterize the solution set, and devise numerical approaches to find the solutions. 2) We propose an algorithm that improves upon end-to-end neural-network-based second generation algorithms. In our method, a neural network is first trained as a projector on a training set, and is then plugged in as a projector inside the projected gradient descent (PGD). Since the problem is nonconvex, we relax the PGD to ensure convergence to a local minimum under some constraints. This method outperforms all the previous generation algorithms for Computed Tomography (CT). 3) We develop a novel time-dependent deep-image-prior algorithm for modalities that involve a temporal sequence of images. We parameterize them as the output of an untrained neural network fed with a sequence of latent variables. To impose temporal directionality, the latent variables are assumed to lie on a 1D manifold. The network is then tuned to minimize the data fidelity. We obtain state-of-the-art results in dynamic magnetic resonance imaging (MRI) and even recover intra-frame images. 4) We propose a novel reconstruction paradigm for cryo-electron-microscopy (CryoEM) called CryoGAN. Motivated by generative adversarial networks (GANs), we reconstruct a biomolecule's 3D structure such that its CryoEM measurements resemble the acquired data in a distributional sense. The algorithm is pose-or-likelihood-estimation-free, needs no ab initio, and is proven to have a theoretical guarantee of recovery of the true structure. 5) We extend CryoGAN to reconstruct continuously varying conformations of a structure from heterogeneous data. We parameterize the conformations as the output of a neural network fed with latent variables on a low-dimensional manifold. The method is shown to recover continuous protein conformations and their energy landscape.

A big challenge in algorithmic composition is to devise a model that is both easily trainable and able to reproduce the long-range temporal dependencies typical of music. Here we investigate how artificial neural networks can be trained on a large corpus of melodies and turned into automated mu- sic composers able to generate new melodies coherent with the style they have been trained on. We employ gated-recurrent unit (GRU) networks that have been shown to be particularly efficient in learning complex sequential activations with arbitrary long time lags. Our model processes rhythm and melody in parallel while modeling the relation between these two properties. Using such an approach, we were able to generate interesting complete melodies or suggest possible continuations of a melody fragment that is coherent with the characteristics of the fragment itself.

2016