Phonetic Subspace Features for Improved Query by Example Spoken Term Detection
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as phonemes is a crucial st ...
This work tests several classification techniques and acoustic features and further combines them using late fusion to classify paralinguistic information for the ComParE 2018 challenge. We use Multiple Linear Regression (MLR) with Ordinary Least Squares ( ...
Speech is a complex signal produced by a highly constrained articulation machinery. Neuro and psycholinguistic theories assert that speech can be decomposed into molecules of structured atoms. Although characterization of the atoms is controversial, the ex ...
This thesis deals with exploiting the low-dimensional multi-subspace structure of speech towards the goal of improving acoustic modeling for automatic speech recognition (ASR). Leveraging the parsimonious hierarchical nature of speech, we hypothesize that ...
Certain brain disorders, resulting from brainstem infarcts, traumatic brain injury, stroke and amyotrophic lateral sclerosis, limit verbal communication despite the patient being fully aware. People that cannot communicate due to neurological disorders wou ...
In this paper, we propose a novel Deep Micro-Dictionary Learning and Coding Network (DDLCN). DDLCN has most of the standard deep learning layers (pooling, fully, connected, input/output, etc.) but the main difference is that the fundamental convolutional l ...
Speech-based degree of sleepiness estimation is an emerging research problem. In the literature, this problem has been mainly addressed through modeling of low level of descriptors. This paper investigates an end-to-end approach, where given raw waveform a ...
This paper focuses on the problem of query by example spoken term detection (QbE-STD) in zero-resource scenario. Current state-of-the-art approaches to tackle this problem rely on dynamic programming based template matching techniques using phone posterior ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
Conventional deep neural networks (DNN) for speech acoustic modeling rely on Gaussian mixture models (GMM) and hidden Markov model (HMM) to obtain binary class labels as the targets for DNN training. Subword classes in speech recognition systems correspond ...