MATHICSE Technical Report : Convergence of quasi-optimal sparse grid approximation of Hilbert-valued functions: application to random elliptic PDEs
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A new explicit stabilized scheme of weak order one for stiff and ergodic stochastic differential equations (SDEs) is introduced. In the absence of noise, the new method coincides with the classical deterministic stabilized scheme (or Chebyshev method) for ...
In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” ...
In this work we build on the classical adaptive sparse grid algorithm (T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature), obtaining an enhanced version capable of using non-nested collocation points, and supporting quadrature and in ...
Finite elements methods (FEMs) with numerical integration play a central role in numerical homogenization methods for partial differential equations with multiple scales, as the effective data in a homogenization problem can only be recovered from a micros ...
We previously introduced a preconditioner that has proven effective for hp-FEM dis- cretizations of various challenging elliptic and hyperbolic problems. The construc- tion is inspired by standard nested dissection, and relies on the assumption that the Sc ...
We are interested in the approximation of partial differential equations on domains decomposed into two (or several) subdomains featuring non-conforming interfaces. The non-conformity may be due to different meshes and/or different polynomial degrees used ...
Estimating intensity fields of stochastic phenomenons is of crucial interest in many scientific applications. Typical experimental setups involve an acquisition system, that subsequently filters and samples the probed intensity field. This equivalently def ...
This thesis addresses the development and implementation of efficient and parallel algorithms for the numerical simulation of Fluid-Structure Interaction (FSI) problems in hemodynamics. Indeed, hemodynamic conditions in large arteries are significantly aff ...
Aquatic ecologists have recently employed dynamic models to estimate aquatic ecosystem metabolism. All approaches involve numerically solving a differential equation describing dissolved oxygen (DO) dynamics. Although the DO differential equation can be so ...
Association for the Sciences of Limnology and Oceanography2016
We are interested in the approximation of partial differential equations on domains decomposed into two (or several) subdomains featuring non-conforming interfaces. The non-conformity may be due to different meshes and/or different polynomial degrees used ...