Clique problemIn computer science, the clique problem is the computational problem of finding cliques (subsets of vertices, all adjacent to each other, also called complete subgraphs) in a graph. It has several different formulations depending on which cliques, and what information about the cliques, should be found. Common formulations of the clique problem include finding a maximum clique (a clique with the largest possible number of vertices), finding a maximum weight clique in a weighted graph, listing all maximal cliques (cliques that cannot be enlarged), and solving the decision problem of testing whether a graph contains a clique larger than a given size.
Permeability (Earth sciences)Permeability in fluid mechanics and the Earth sciences (commonly symbolized as k) is a measure of the ability of a porous material (often, a rock or an unconsolidated material) to allow fluids to pass through it. Permeability is a property of porous materials that is an indication of the ability for fluids (gas or liquid) to flow through them. Fluids can more easily flow through a material with high permeability than one with low permeability.
Brook TaylorBrook Taylor (18 August 1685 – 29 December 1731) was an English mathematician best known for creating Taylor's theorem and the Taylor series, which are important for their use in mathematical analysis. Brook Taylor was born in Edmonton (former Middlesex). Taylor was the son of John Taylor, MP of Patrixbourne, Kent and Olivia Tempest, the daughter of Sir Nicholas Tempest, Baronet of Durham. He entered St John's College, Cambridge, as a fellow-commoner in 1701, and took degrees in LL.B. in 1709 and LL.D. in 1714.
Recursive definitionIn mathematics and computer science, a recursive definition, or inductive definition, is used to define the elements in a set in terms of other elements in the set (Aczel 1977:740ff). Some examples of recursively-definable objects include factorials, natural numbers, Fibonacci numbers, and the Cantor ternary set. A recursive definition of a function defines values of the function for some inputs in terms of the values of the same function for other (usually smaller) inputs.