Consistent Tomography Under Partial Observations Over Adaptive Networks
Related publications (70)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Beliefs inform the behaviour of forward-thinking agents in complex environments. Recently, sequential Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical conditions. However, we lack critical theory to ...
A multi-agent system consists of a collection of decision-making or learning agents subjected to streaming observations from some real-world phenomenon. The goal of the system is to solve some global learning or optimization problem in a distributed or dec ...
Motivated by alternating game-play in two-player games, we study an altenating variant of the Online Linear Optimization (OLO). In alternating OLO, a learner at each round t ∈[n] selects a vector xt and then an adversary selects a cost-vector ct ∈[−1,1]n. ...
2023
,
Finding optimal bidding strategies for generation units in electricity markets would result in higher profit. However, it is a challenging problem due to the system uncertainty which is due to the lack of knowledge of the strategies of other generation uni ...
In multi-agent reinforcement learning, multiple agents learn simultaneously while interacting with a common environment and each other. Since the agents adapt their policies during learning, not only the behavior of a single agent becomes non-stationary, b ...
In this article, we study the problem of Byzantine fault-tolerance in a federated optimization setting, where there is a group of agents communicating with a centralized coordinator. We allow up to f Byzantine-faulty agents, which may not follow a prescr ...
An adaptive network consists of multiple communicating agents, equipped with sensing and learning abilities that allow them to extract meaningful information from measurements. The objective of the network is to solve a global inference problem in a decent ...
A plethora of real world problems consist of a number of agents that interact, learn, cooperate, coordinate, and compete with others in ever more complex environments. Examples include autonomous vehicles, robotic agents, intelligent infrastructure, IoT de ...
Learning socially-aware motion representations is at the core of recent advances in multi-agent problems, such as human motion forecasting and robot navigation in crowds. Despite promising progress, existing representations learned with neural networks sti ...
We examine the problem of regret minimization when the learner is involved in a continuous game with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to achieve significantly lower regret relative to fully ...