Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
One-form (differential geometry)In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold is a smooth mapping of the total space of the tangent bundle of to whose restriction to each fibre is a linear functional on the tangent space. Symbolically, where is linear. Often one-forms are described locally, particularly in local coordinates. In a local coordinate system, a one-form is a linear combination of the differentials of the coordinates: where the are smooth functions.
Lie's third theoremIn the mathematics of Lie theory, Lie's third theorem states that every finite-dimensional Lie algebra over the real numbers is associated to a Lie group . The theorem is part of the Lie group–Lie algebra correspondence. Historically, the third theorem referred to a different but related result. The two preceding theorems of Sophus Lie, restated in modern language, relate to the infinitesimal transformations of a group action on a smooth manifold. The third theorem on the list stated the Jacobi identity for the infinitesimal transformations of a local Lie group.
Semidirect productIn mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: an inner semidirect product is a particular way in which a group can be made up of two subgroups, one of which is a normal subgroup. an outer semidirect product is a way to construct a new group from two given groups by using the Cartesian product as a set and a particular multiplication operation.