Upper setIn mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in X) of a partially ordered set is a subset with the following property: if s is in S and if x in X is larger than s (that is, if ), then x is in S. In other words, this means that any x element of X that is to some element of S is necessarily also an element of S. The term lower set (also called a downward closed set, down set, decreasing set, initial segment, or semi-ideal) is defined similarly as being a subset S of X with the property that any element x of X that is to some element of S is necessarily also an element of S.
Rectangular functionThe rectangular function (also known as the rectangle function, rect function, Pi function, Heaviside Pi function, gate function, unit pulse, or the normalized boxcar function) is defined as Alternative definitions of the function define to be 0, 1, or undefined. Its periodic version is called a rectangular wave. The rect function has been introduced by Woodward in as an ideal cutout operator, together with the sinc function as an ideal interpolation operator, and their counter operations which are sampling (comb operator) and replicating (rep operator), respectively.
Global dimensionIn ring theory and homological algebra, the global dimension (or global homological dimension; sometimes just called homological dimension) of a ring A denoted gl dim A, is a non-negative integer or infinity which is a homological invariant of the ring. It is defined to be the supremum of the set of projective dimensions of all A-modules. Global dimension is an important technical notion in the dimension theory of Noetherian rings.
Independence systemIn combinatorial mathematics, an independence system S is a pair , where V is a finite set and \mathcal{I} is a collection of subsets of V (called the independent sets or feasible sets) with the following properties: The empty set is independent, i.e., . (Alternatively, at least one subset of V is independent, i.e., .) Every subset of an independent set is independent, i.e., for each , we have . This is sometimes called the hereditary property, or downward-closedness. Another term for an independence system is an abstract simplicial complex.
Filter (mathematics)In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal. Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic. Filters on sets were introduced by Henri Cartan in 1937.