Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Wind Farm Layout Optimization (WFLO) can be useful to minimize power losses associated with turbine wakes in wind farms. This work presents a new evolutionary WFLO methodology integrated with a recently developed and successfully validated Gaussian wake model (Bastankhah and Porte-Agel model). Two different parametrizations of the evolutionary methodology are implemented, depending on if a baseline layout is considered or not. The proposed scheme is applied to two real wind farms, Horns Rev I (Denmark) and Princess Amalia (the Netherlands), and two different turbine models, V80-2MW and NREL-5MW. For comparison purposes, these four study cases are also optimized under the traditionally used top-hat wake model (Jensen model). A systematic overestimation of the wake losses by the Jensen model is confirmed herein. This allows it to attain bigger power output increases with respect to the baseline layouts (between 0.72% and 1.91%) compared to the solutions attained through the more realistic Gaussian model (0.24-0.95%). The proposed methodology is shown to outperform other recently developed layout optimization methods. Moreover, the electricity cable length needed to interconnect the turbines decreases up to 28.6% compared to the baseline layouts.
Fernando Porté Agel, Guillem Armengol Barcos
Karen Ann J Mulleners, Sébastien Le Fouest