Publication

Colloidal Nanocrystals as Heterogeneous Catalysts for Electrochemical CO2 Conversions

Abstract

In the past decade, atomically engineered nanomaterials with different sizes and exposed facets have been proven to be excellent model systems to advance catalytic studies. Colloidal chemistry is one of the most powerful wet-chemistry techniques to tailor-make nanomaterials, thus making colloidal nanocrystals an ideal playground to investigate structural and compositional reaction sensitivities but also to study degradation pathways. In this Perspective, we focus on colloidally synthesized nanocrystals as heterogeneous catalysts for the electrochemical CO2 reduction reaction. We discuss very recent studies from us and from others, which encourage the scientific community to explore the tunability offered by colloidal chemistry even further. For example, synergistic interactions of the metallic nanocrystal catalyst with domains of different chemical nature could be exploited with the aim of revealing new catalytic motifs that promote the activity, selectivity, and stability of electrocatalysts for CO2 conversion.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.