A Regularization Framework for Learning Over Multitask Graphs
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Weighted undirected graphs are a simple, yet powerful way to encode structure in data. A first question we need to address regarding such graphs is how to use them effectively to enhance machine learning problems. A second but more important question is ho ...
Approximate graph matching (AGM) refers to the problem of mapping the vertices of two structurally similar graphs, which has applications in social networks, computer vision, chemistry, and biology. Given its computational cost, AGM has mostly been limited ...
The large-scale adoption of the Web 2.0 paradigm has revolutionized the way we interact with the Web today. End-users, so far mainly passive consumers of information are now becoming active information producers, creating, uploading, and commenting on all ...
In this work, we present a technique that learns discriminative audio features for Music Information Retrieval (MIR). The novelty of the proposed technique is to design auto-encoders that make use of data structures to learn enhanced sparse data representa ...
Over the past decade, investigations in different fields have focused on studying and understanding real networks, ranging from biological to social to technological. These networks, called complex networks, exhibit common topological features, such as a h ...
In this paper, we propose a new method for the motion planning problem of rigid object dexterous manipulation with a robotic multi-fingered hand, under quasi-static movement assumption. This method computes both object and finger trajectories as well as th ...
We propose a parametric dictionary learning algorithm to design structured dictionaries that sparsely represent graph signals. We incorporate the graph structure by forcing the learned dictionaries to be concatenations of subdictionaries that are polynomia ...
In this work, we are interested in generalizing convolutional neural networks (CNNs) from low-dimensional regular grids, where image, video and speech are represented, to high-dimensional irregular domains, such as social networks, brain connectomes or wor ...
Noisy 3D point clouds arise in many applications. They may be due to errors when creating a 3D model from images or simply to imprecise depth sensors. Point clouds can be given geometrical structure using graphs created from the similarity information betw ...
We present an algorithm that generates natural and intuitive deformations via direct manipulation for a wide range of shape representations and editing scenarios. Our method builds a space deformation represented by a collection of affine transformations o ...