Non-linear modelling of saturated internal and external MHD instabilities in tokamaks
Related publications (49)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the fra ...
Similarly to neutral fluids, plasmas often exhibit turbulent behavior. Turbulence in plasmas is usually more complex than in neutral fluids due to long range interactions via electric and magnetic fields, and kinetic effects. It gives rise to many interest ...
A general feature of particle transport in the core of tokamak plasmas is that when core particle sources are small, a stationary peaked density profile is provided by a balance of outward diffusion and inward convection, driven by either neoclassical or t ...
Thermonuclear controlled fusion research is a highly active branch of plasma physics. The main goal is the production of energy from the fusion reaction of hydrogen isotope nuclei, the same reaction that powers stars. The most promising present approach ar ...
Numerical computations of ITER equilibria in the hybrid scenario using a three-dimensional (3D) magnetohydrodynamic equilibrium code with nested magnetic flux surfaces demonstrate the formation of internal 3D helical cores similar to saturated ideal intern ...
In magnetically confined fusion devices, the energy and particle transport is significantly larger than expected from purely collisional processes. This degraded confinement mostly results from small-scale turbulence and prevents from reaching self-sustain ...
CRONOS is a suite of numerical codes for the predictive/interpretative simulation of a full tokamak discharge. It integrates, in a modular structure, a 1D transport solver with general 2D magnetic equilibria, several heat, particle and impurities transport ...
Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly couple ...
One of the most important open issue for the realization of a fusion reactor is the understanding of the turbulence that develops at the periphery of the device, in the region called the edge. Turbulence is the major cause of particles and energy losses an ...
The collisional damping of seeded E X B zonal flows on the ion Larmor radius scale is studied using a gyrokinetic model. The focus is on flow damping due to finite Larmor radius effects, which cause a nu(parallel to)/nu anisotropy of the ion distribution f ...