Publication

Ecological implications of gene regulation by TfoX and TfoY among diverse Vibrio species

Abstract

Bacteria of the genus Vibrio are common members of aquatic environments where they compete with other prokaryotes and defend themselves against grazing predators. A macromolecular protein complex called the type VI secretion system (T6SS) is used for both purposes. Previous research showed that the sole T6SS of the human pathogen V. cholerae is induced by extracellular (chitin) or intracellular (low c‐di‐GMP levels) cues and that these cues lead to distinctive signalling pathways for which the proteins TfoX and TfoY serve as master regulators. In this study, we tested whether the TfoX‐ and TfoY‐mediated regulation of T6SS, concomitantly with natural competence or motility, was conserved in non‐cholera Vibrio species, and if so, how these regulators affected the production of individual T6SSs in double‐armed vibrios. We show that, alongside representative competence genes, TfoX regulates at least one T6SS in all tested Vibrio species. TfoY, on the other hand, fostered motility in all vibrios but had a more versatile T6SS response in that it did not foster T6SS‐mediated killing in all tested vibrios. Collectively, our data provide evidence that the TfoX‐ and TfoY‐mediated signalling pathways are mostly conserved in diverse Vibrio species and important for signal‐specific T6SS induction.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (38)
Vibrio
Vibrio is a genus of Gram-negative bacteria, possessing a curved-rod (comma) shape, several species of which can cause foodborne infection, usually associated with eating undercooked seafood. Being highly salt tolerant and unable to survive in fresh water, Vibrio spp. are commonly found in various salt water environments. Vibrio spp. are facultative anaerobes that test positive for oxidase and do not form spores. All members of the genus are motile. They are able to have polar or lateral flagellum with or without sheaths.
Vibrio cholerae
Vibrio cholerae is a species of Gram-negative, facultative anaerobe and comma-shaped bacteria. The bacteria naturally live in brackish or saltwater where they attach themselves easily to the chitin-containing shells of crabs, shrimp, and other shellfish. Some strains of V. cholerae are pathogenic to humans and cause a deadly disease called cholera, which can be derived from the consumption of undercooked or raw marine life species. V. cholerae was first described by Félix-Archimède Pouchet in 1849 as some kind of protozoa.
Pathogen
In biology, a pathogen (πάθος, pathos "suffering", "passion" and -γενής, -genēs "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ. The term pathogen came into use in the 1880s. Typically, the term pathogen is used to describe an infectious microorganism or agent, such as a virus, bacterium, protozoan, prion, viroid, or fungus. Small animals, such as helminths and insects, can also cause or transmit disease.
Show more
Related publications (36)

Dangerous acquaintances: the interplay between type IV pili and the type VI secretion system during Vibrio cholerae's environmental lifestyle

Simon Bernhard Otto

Cholera, caused by the bacterium Vibrio cholerae, has affected humanity throughout history and still impacts millions of people every year. Apart from being a human pathogen, V. cholerae is a common member of the aquatic environment. Due to this natural re ...
EPFL2024

Interactions between pili affect the outcome of bacterial competition driven by the type VI secretion system

Melanie Blokesch, Anne-Florence Raphaëlle Bitbol, Alexandre Lemopoulos, Richard Marie Servajean, Simon Bernhard Otto

The bacterial type VI secretion system (T6SS) is a widespread, kin-discriminatory weapon capable of shaping microbial communities. Due to the system’s dependency on contact, cellular interactions can lead to either competition or kin protection. Cell-to-ce ...
2024

Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae

Alexandre Louis André Persat, Sofya Mikhaleva

Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm f ...
CELL PRESS2023
Show more
Related MOOCs (7)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.