Coupled Atomistics and Discrete Dislocations in 3d (CADD-3d)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Metal plasticity is an inherently multiscale phenomenon due to the complex long-range field of atomistic dislocations that are the primary mechanism for plastic deformation in metals. Atomistic/Continuum (A/C) coupling methods are computationally efficient ...
Modeling dislocation multiplication due to interaction and reactions on a mesoscopic scale is an important task for the physically meaningful description of stage II hardening in face centered cubic crystalline materials. In recent Discrete Dislocation Dyn ...
2019
Capturing plasticity at realistic dislocation densities with high configurational complexity requires a continuum-level discrete dislocation dynamics (DDD) description. However, many features controlling dislocation motion are inherently atomistic, such as ...
2018
, , ,
The plastic flow behavior of bcc transition metals up to moderate temperatures is dominated by the thermally activated glide of screw dislocations, which in turn is determined by the atomic-scale screw dislocation core structure and the associated kink-pai ...
Large scale 3D atomistic simulations are performed to study the interaction between a curved dislocation with a dominant screw character and a Coherent Twin Boundary (CTB). Three FCC metals (Al, Cu and Ni) are addressed using 6 embedded-atom method (EAM) p ...
During the last decades, as usages of Nano- and Micro-Electro-Mechanical Systems (MEMS and NEMS) increase significantly, it becomes necessary to understand performances (e.g. strength and ductility) of small-scaled materials. In such small scales, dislocat ...
The performance of crystalline materials varies depending on the considered scale. To understand the size dependence of materials properties, the interaction and evolution of defects are essential. As such, the role played by dislocations is crucial for mo ...
Dislocation dynamics are important to understand material plasticity in small-sized materials. In case of face-centered cubic crystalline systems, densities of initial dislocations, dislocation nucleations and starvations processes influence material stren ...
Metal fatigue during cyclic loading puts an endurance limit on most of today's technology. It impacts the reliability of metallic components used for transportation, electronic devices and energy production because fatigue failure can occur without any app ...
The plastic deformation in hcp metals is complex, with the associated dislocation core structures and properties not well understood on many slip planes in most hcp metals. A first step in establishing the dislocation properties is to examine the stable st ...