Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The rapid expansion of online-based services requires novel energy and performance efficient architectures to meet power and latency constraints. Fast architectural exploration has become a key enabler in the proposal of architectural innovation. In this paper, we present gem5-X, a gem5-based system level simulation framework, and a methodology to optimize many-core systems for performance and power. As real-life case studies of many-core server workloads, we use real-time video transcoding and image classification using convolutional neural networks (CNNs). Gem5-X allows us to identify bottlenecks and evaluate the potential benefits of architectural extensions such as in-cache computing and 3D stacked High Bandwidth Memory. For real-time video transcoding, we achieve 15% speed-up using in-order cores with in-cache computing when compared to a baseline in-order system and 76% energy savings when compared to an Out-of-Order system. When using HBM, we further accelerate real-time transcoding and CNNs by up to 7% and 8% respectively.
David Atienza Alonso, Marina Zapater Sancho, Luis Maria Costero Valero, Darong Huang, Ali Pahlevan
, , , , ,