Stochastic approximation methods for PDE constrained optimal control problems with uncertain parameters
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...
Uncertainty of spillover effects – including property devaluation - from proposed land-use change elicits opposition to local development. This hinders cities’ ability to implement land-use policy aimed at housing affordability and environmental sustainabi ...
We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...
In this article, we propose a dynamical system to avoid obstacles which are star shaped and simultaneously converge to a goal. The convergence is almost-global in a domain and the stationary points are identified explicitly. Our approach is based on the id ...
We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...
Decision-making permeates every aspect of human and societal development, from individuals' daily choices to the complex decisions made by communities and institutions. Central to effective decision-making is the discipline of optimization, which seeks the ...
We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that th ...
Over the course of history, the relationship between cities and their waters has shown different gradients of interweaving, marked by cycles of bonding and distancing. Following a period of complete neglect of urban watercourses, the versatile, multifacete ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...