Turbulent Flows over Rough Permeable Beds in Mountain Rivers: Experimental Insights and Modeling
Related publications (375)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The problem of accurate Eulerian-Lagrangian modeling of inertial particle dispersion in large-eddy simulation (LES) of turbulent wall-bounded flows is addressed. We run direct numerical simulation (DNS) of turbulent channel flow at shear Reynolds number Re ...
Current capabilities of Large-Eddy Simulation (LES) in Eulerian-Lagrangian studies of dispersed flows are limited by the modeling of the Sub-Grid Scale (SGS) turbulence effects on particle dynamics. These effects should be taken into account in order to re ...
This research focus on the influence of bank inclination and roughness on the near-bank flow patterns which is relevant for bank protection, bank erosion and design of stable river configuration. Foregoing studies have been carried out mostly in rectangula ...
Gravity driven flows on inclines can be caused by cold, saline or turbid inflows into water bodies. Another example are cold downslope winds, which are caused by cooling of the atmosphere at the lower boundary. In a well-known contribution, Ellison and Tur ...
Fluid-structure investigations in hydraulic machines using coupled simulations are extremely time-consuming; therefore we develop an alternative method. In this paper, a model is proposed to predict fluid-structure coupling by linearizing the hydrodynamic ...
International Association For Hydraulic Research2008
The ability of subfilter-scale (SFS) models to reproduce the statistical properties of SFS stresses and energy transfers over heterogeneous surface roughness is key to improving the accuracy of large-eddy simulations of the atmospheric boundary layer. In t ...
Interplay between capillary, gravity and viscous forces in unsaturated porous media gives rise to a range of complex flow phenomena affecting morphology, stability and dynamics of wetting and drainage fronts. Similar average phase contents may result in si ...
Experimental results are presented of the mean flow and turbulence characteristics in the near field of a plane wall jet issuing from a nozzle onto flat and concave walls consisting of fixed sand beds. This is a flow configuration of interest for sediment ...
A wind-tunnel experiment was designed and carried out to study the effect of a surface roughness transition on subfilter-scale (SFS) physics in a turbulent boundary layer. Specifically, subfilter-scale stresses are evaluated that require parameterizations ...
Evaporation from porous media involves mass and energy transport including phase change, vapor diffusion, and liquid flow, resulting in complex displacement patterns affecting drying rates. Force balance considering media properties yields characteristic l ...