Publication

Isotope Dependence of Confinement in JET-ILW Deuterium and Hydrogen Plasmas

Henri Weisen
2018
Conference paper
Abstract

Heat, particle and momentum confinement in L- and H-mode in deuterium, hydrogen and in D/H mixtures have been investigated in JET with the ITER-like wall (JET-ILW). The paper expands on previous work [1,2] by presenting new results on heat, momentum and particle transport using measured ion temperatures and toroidal rotation frequencies, as well as new gyrokinetic analyses and pedestal studies. In L-mode a weak positive scaling of thermal stored energy with ion mass, EthA0.15, is found [1], consistently with multi-machine scaling EthA0.2 [3]. Differences between species in global particle confinement are similarly weak. Core temperature profiles are resilient to changes in input power with R/LTe8 at mid-radius [1]. Flux-driven core transport modelling with JETTO-TGLF show ITG’s to be dominant and predict no isotope scaling as a result of the Ti profile resilience (stiffness), showing that global confinement can depart from simple local GyroBohm scaling. In type I ELMy H-mode it was not possible, except in a couple of cases, to establish the same pedestal and core densities in H as in D, despite gas fuelling rates several times higher in H, showing a strong reduction of global particle confinement in hydrogen. These discharges, too, have stiff temperature profiles with no apparent difference in core R/LTe between species, i.e. differences between species in core and global confinement arise as a result of differences in the pedestal, the most striking of which are differences in pedestal density and pedestal density width. Regressions for the thermal stored energy from kinetic measurements and independently from EFIT equilibrium reconstructions provide mass exponents near 0.4, i.e. twice that of IPB98(y,2). Momentum and particle confinement have a similar strong scaling with isotope mass. Nonlinear GENE gyrokinetic flux-tube calculations at mid-radius, including the effects of collisions, EB and impurities, show a reversal of GyroBohm scaling in the core of H-modes. Dimensionless identity experiments (identical *,*,q) for H and D pairs provided good matches for the kinetic profiles in L-mode and near-identical normalised confinement times, in agreement with JETTO-TGLF modelling [4].

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Magnetic confinement fusion
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy.
Isotope
Isotopes are distinct nuclear species (or nuclides, as technical term) of the same element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but differ in nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties.
Isotopic labeling
Isotopic labeling (or isotopic labelling) is a technique used to track the passage of an isotope (an atom with a detectable variation in neutron count) through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific atoms by their isotope. The reactant is then allowed to undergo the reaction. The position of the isotopes in the products is measured to determine the sequence the isotopic atom followed in the reaction or the cell's metabolic pathway.
Show more
Related publications (40)

The isotopic signature of U(V) during bacterial reduction

Marinella Mazzanti, Rizlan Bernier-Latmani, Margaux Camille Andréa Molinas, Radmila Faizova, Ashley Richards Brown

The two-step electron transfer during bacterial reduction of UVI to UIV is typically accompanied by mass-independent fractionation of the 238U and 235U isotopes, whereby the heavy isotope accumulates in the reduced product. However, the role of the UV inte ...
2024

The role of isotope mass and transport for H-mode access in tritium containing plasmas at JET with ITER-like wall

Haomin Sun, Henri Weisen, Javier García Hernández, Marco Wischmeier, Nicola Vianello, Mikhail Maslov

The required heating power, P-LH, to access the high confinement regime (H-mode) in tritium containing plasmas is investigated in JET with ITER-like wall at a toroidal magnetic field of B-t = 1.8 T and a plasma current of I-p = 1.7 MA. PLH, also referred t ...
IOP Publishing Ltd2023

Mercury Isotope Fractionation during Dark Abiotic Reduction of Hg(II) by Dissolved, Surface-Bound, and Structural Fe(II)

Lorenz Schwab

Stable mercury (Hg) isotope ratios are an emerging tracer for biogeochemical transformations in environmental systems, but their application requires knowledge of isotopic enrichment factors for individual processes. We investigated Hg isotope fractionatio ...
Washington2023
Show more
Related MOOCs (7)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.