Mobility Degradation of 28-nm Bulk MOSFETs Irradiated to Ultrahigh Total Ionizing Doses
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Objective. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity ...
MALTA is a depleted monolithic active pixel sensor (DMAPS) developed in the Tower Semiconductor 180-nm CMOS imaging process. Monolithic CMOS sensors offer advantages over current hybrid imaging sensors in terms of both increased tracking performance due to ...
BackgroundThe increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now ...
This article investigates the total ionizing dose (TID) degradation mechanisms of 16-nm bulk Si FinFETs at ultrahigh doses. n- and p-FinFETs with several channel lengths are irradiated up to 1 Grad(SiO2) and then annealed for 24 h at 100 degrees C. Irradia ...
This article investigates the device variability induced by the total ionizing dose (TID) effects in a commercial 16-nm bulk nFinFETs, using specially designed test structures and measurement procedures aimed at maximizing the matching between devices. DC ...
With the increasing capabilities of the microelectronics technology, future particle detectors in high energy physics will be able to yield high-level features that are not only simple geometrical positions or energy measurement in the silicon sensors used ...
This article investigates the fin- and finger-number dependence of the total ionizing dose (TID) degradation in 16-nm bulk Si FinFETs at ultrahigh doses. n- and p-FinFETs designed with different numbers of fins and fingers are irradiated up to 500 Mrad(SiO ...
Total ionizing dose (TID) mechanisms are investigated in 28-nm MOSFETs via dc static and low-frequency noise measurements. nMOSFETs and pMOSFETs are irradiated up to 1 Grad(SiO2) and annealed at high temperatures. TID sensitivity depends on the channel len ...
Modern silicon-based detectors for high-energy physics operate in an experimental environment with sub-zero temperatures. At those temperatures, even low traces of humidity will produce vapor condensation with damages to the detectors. Monitoring relative ...
Total ionizing radiation compromises electrical characteristics of microelectronic devices and even causes functional failures of integrated circuits. It has been identified as a potential threat to electronic components, especially those in high-energy ph ...