Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the last years, the number of studies carried out in the field of acoustic metamaterials has significantly increased. In year 2009, our group proposed a concept of acoustic composite right/left hand transmission line (CRLH-TL) metamaterial, consisting o ...
Metamaterials are artificially structured materials possessing exotic electromagnetic or acoustic properties that are not readily available in nature, for instance synthesizing negative, zero, or very large index of refraction. Their exotic features are ty ...
Broadband impedance matching and zero reflection of acoustic waves at a planar interface between two natural materials is a rare phenomenon, unlike its optical counterpart, frequently observed for polarized light incident at the Brewster angle. In this art ...
Internal degrees of freedom and periodic structure are critical requirements in the design of acoustic/elastic metamaterials since they can give rise to extraordinary properties like negative effective mass and stiffness. However, they are challenging to r ...
Most research focuses on varying the resonator and dielectric spacer to configure the absorption and resonant frequency of terahertz (THz) metamaterial absorbers (MAs), where a metal ground plane is used as a perfect reflector of incident THz waves. In thi ...
We prove that balanced loss-gain distributions provide an elegant path towards realizing loss-free unidirectional cloaks for objects much larger than the wavelength. By coating a scatterer with an ultrathin metasurface with balanced loss and gain, such as ...
We explore the largely uncharted scattering properties of acoustic systems that are engineered to be invariant under a special kind of space-time symmetry, consisting in taking their mirror image and running time backwards. Known as Parity-Time symmetry, t ...
Invisibility has been a tantalizing concept for mankind over several centuries. With recent developments in metamaterial science and nanotechnology, the possibility of cloaking objects to incoming electromagnetic radiation has been escaping the realm of sc ...
Metasurfaces have gained fame for their ability to control the transmitted and reflected phase front of waves. Here, we introduce a reflector-type acoustic metasurface designed in such a way to control the phase front of reflected sound waves. The proposed ...
The development of metamaterials, i.e., artificially structured materials that interact with waves in unconventional ways, has revolutionized our ability to manipulate the propagation of electromagnetic waves and their interaction with matter. One of the m ...