Sphingolipid metabolic flow controls phosphoinositide turnover at the trans ‐Golgi network
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Next to the protein-based machineries composed of small G-proteins, coat complexes, SNAREs and tethering factors, the lipid-based machineries are emerging as important players in membrane trafficking. As a component of these machineries, lipid transfer pro ...
Glycosylphosphatidylinositol (GPI) anchor biosynthesis takes place in the endoplasmic reticulum (ER). After protein attachment, the GPI anchor is transported to the Golgi where it undergoes fatty acid remodeling. The ER exit of GPI-anchored proteins is con ...
The efficacy and success of many cellular processes is dependent on a tight orchestration of proteins trafficking to and from their site(s) of action in a time-controlled fashion. Recently, a dynamic cycle of palmitoylation/de-palmitoylation has been shown ...
The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investig ...
Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--t ...
Compartmentalization is a defining feature of eukaryotic cells that allows the spatial segregation of different functions, such as protein and lipid synthesis, and ensures their fidelity and efficiency. This imposes the need for an intense flux of metaboli ...
Lipids play critical roles in energy homeostasis, membrane structure, and signaling. Using liquid chromatography and mass spectrometry, we provide a comprehensive semiquantification of lipids during the life cycle of Drosophila melanogaster (230 glyceropho ...
Sphingolipids are abundant components of eukaryotic cells. Their localization in the plasma membrane allows for the cell to carry out multiple important functions for its viability. One of the most important roles of the sphingolipids is their ability to f ...
Sphingolipids are not only important components of membranes but also have functions in protein trafficking and intracellular signaling. The LCB1 gene encodes a subunit of the serine palmitoyltransferase, which is responsible for the first step of sphingol ...
The role of lipids in eukaryotic cells is of high importance. They are one of the main components of cell membranes, act as storage of high potential energy as well as being a scaffold of signaling proteins or participate in signaling themselves. Many dise ...