Program optimizationIn computer science, program optimization, code optimization, or software optimization, is the process of modifying a software system to make some aspect of it work more efficiently or use fewer resources. In general, a computer program may be optimized so that it executes more rapidly, or to make it capable of operating with less memory storage or other resources, or draw less power. Although the word "optimization" shares the same root as "optimal", it is rare for the process of optimization to produce a truly optimal system.
Optimizing compilerIn computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.
CooperativeA cooperative (also known as co-operative, co-op, or coop) is "an autonomous association of persons united voluntarily to meet their common economic, social and cultural needs and aspirations through a jointly owned and democratically-controlled enterprise". Cooperatives are democratically controlled by their members, with each member having one vote in electing the board of directors.
Cooperative bankingCooperative banking is retail and commercial banking organized on a cooperative basis. Cooperative banking institutions take deposits and lend money in most parts of the world. Cooperative banking, as discussed here, includes retail banking carried out by credit unions, mutual savings banks, building societies and cooperatives, as well as commercial banking services provided by mutual organizations (such as cooperative federations) to cooperative businesses.
Register allocationIn compiler optimization, register allocation is the process of assigning local automatic variables and expression results to a limited number of processor registers. Register allocation can happen over a basic block (local register allocation), over a whole function/procedure (global register allocation), or across function boundaries traversed via call-graph (interprocedural register allocation). When done per function/procedure the calling convention may require insertion of save/restore around each call-site.
Agricultural cooperativeAn agricultural cooperative, also known as a farmers' co-op, is a producer cooperative in which farmers pool their resources in certain areas of activity. A broad typology of agricultural cooperatives distinguishes between agricultural service cooperatives, which provide various services to their individually-farming members, and agricultural production cooperatives in which production resources (land, machinery) are pooled and members farm jointly.
Inline expansionIn computing, inline expansion, or inlining, is a manual or compiler optimization that replaces a function call site with the body of the called function. Inline expansion is similar to macro expansion, but occurs during compilation, without changing the source code (the text), while macro expansion occurs prior to compilation, and results in different text that is then processed by the compiler. Inlining is an important optimization, but has complicated effects on performance.
CPU cacheA CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, and rarely even L4), with different instruction-specific and data-specific caches at level 1.
Loop nest optimizationIn computer science and particularly in compiler design, loop nest optimization (LNO) is an optimization technique that applies a set of loop transformations for the purpose of locality optimization or parallelization or another loop overhead reduction of the loop nests. (Nested loops occur when one loop is inside of another loop.) One classical usage is to reduce memory access latency or the cache bandwidth necessary due to cache reuse for some common linear algebra algorithms.
Cache (computing)In computing, a cache (kæʃ ) is a hardware or software component that stores data so that future requests for that data can be served faster; the data stored in a cache might be the result of an earlier computation or a copy of data stored elsewhere. A cache hit occurs when the requested data can be found in a cache, while a cache miss occurs when it cannot. Cache hits are served by reading data from the cache, which is faster than recomputing a result or reading from a slower data store; thus, the more requests that can be served from the cache, the faster the system performs.