Control of NTMs and integrated multi-actuator plasma control on TCV
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The deployment of high power radio frequency waves in the ion cyclotron range (ICRF) constitutes an important operational facility in many plasma devices, including ITER. Any charged particle describes a helical motion around a given magnetic field line, t ...
The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the fra ...
The Tokamak concept, based on magnetic confinement of a hydrogen plasma, is one of today's most promising paths to energy production by nuclear fusion. The experimental scenarios leading to the largest fusion rate are based on a high confinement plasma reg ...
To achieve reactor-relevant conditions in a tokamak plasma, auxiliary heating systems are required and can be realized by waves injected in the plasma that heat ions or electrons under certain conditions. Electron cyclotron resonant heating (ECRH) is a ver ...
Recent numerical calculations have shown that while strong toroidal rotation can increase the external kink limit of tokamak plasmas, the associated rotation shear can drive a Kelvin-Helmholtz like global instability in the plasma, if the rotation frequenc ...
Simulating the most external plasma region of a tokamak, the scrape-off layer (SOL), is of crucial importance in the way towards a fusion reactor as heat load on the vessel wall, impurity generation, and overall plasma confinement, all depend on the plasma ...
An integrated numerical system is established to model time-dependent behavior of the neoclassical tearing mode (NTM) in a tokamak which solves the modified Rutherford equation (MRE) by coupling with plasma transport, equilibrium, heating and current drive ...
The Tokamak à configuration variable (TCV) features the highest electron cyclotron wave power density available to resonantly heat (ECRH) the electrons and to drive noninductive currents in a fusion grade plasma (ECCD). In more than 15 years of exploitatio ...
The ITER Plasma Control System (PCS) requires an extensive set of about 50 diagnostic systems to measure the plasma response and about 20 actuators to act on the plasma to carry out its control functions. The specifications and real limitations of the actu ...
Thermonuclear controlled fusion research is a highly active branch of plasma physics. The main goal is the production of energy from the fusion reaction of hydrogen isotope nuclei, the same reaction that powers stars. The most promising present approach ar ...