Three-dimensional concentration of light in deeply sub-wavelength, laterally tapered gap-plasmon nanocavities
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Plasmonic metamaterials based on metal-dielectric nanostructures exhibit unique optical properties such as high near-field enhancement, negative refractive indexing, and optical cloaking. In this paper, we present a plasmonic multiband metamaterial based o ...
All-electrical spin-wave spectroscopy and frequency-resolved magneto-optical Kerr-effect measurements are combined to study spin waves propagating through a magnetic antidot lattice nanopatterned from a Ni80Fe20 thin film. Spin waves are injected from a pl ...
We investigate experimentally metallic nanoparticle composites fabricated by bottom-up techniques as potential candidates for optical metamaterials. Depending on the plasmonic resonances sustained by individual NPs and their nanoscale organization into lar ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2012
We present our recent work on a one-dimensional acoustic negative refractive index metamaterial based on the concept of dual transmission line extensively investigated in microwave engineering. The proposed structure consists of an acoustic waveguide perio ...
We present an approach for rational design and optimization of plasmonic arrays for ultrasensitive surface enhanced infrared absorption (SEIRA) spectroscopy of specific protein analytes. Motivated by our previous work that demonstrated sub-attomole detecti ...
We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achi ...
We introduce a novel bottom-up approach to fabricate by self assembly a metamaterial from metallic nanoparticles in a two-step process. In the first step, a metamaterial made of densely packed silver nanoparticles is required. The material dispersion with ...
A one-dimensional acoustic negative refractive index metamaterial based on the transmission line approach is presented. This structure implements the dual transmission line concept extensively investigated in microwave engineering. It consists of an acoust ...
We experimentally and numerically demonstrate a planar metamaterial consisting of two asymmetrically positioned pi-structures in a single unit that exhibits plasmonic analogue of electromagnetically induced transparency (EIT). Through the coupling of the c ...
Engineered optical metamaterials present a unique platform for biosensing applications owing to their ability to confine light to nanoscale regions and to their spectral selectivity. Infrared plasmonic metamaterials are especially attractive because their ...