Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Non-Volatile Memory (NVM) technologies exhibit 4× the read access latency of conventional DRAM. When the working set does not fit in the processor cache, this latency gap between DRAM and NVM leads to more than 2× runtime increase for queries dominated by latency-bound operations such as index joins and tuple reconstruction. We explain how to easily hide NVM latency by interleaving the execution of parallel work in index joins and tuple reconstruction using coroutines. Our evaluation shows that interleaving applied to the non-trivial implementations of these two operations in a production-grade codebase accelerates end-to-end query runtimes on both NVM and DRAM by up to 1.7× and 2.6× respectively, thereby reducing the performance difference between DRAM and NVM by more than 60%.
, , , ,