Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Providing somatosensory feedback to amputees is a long-standing objective in prosthesis research. Recently, implantable neural interfaces have yielded promising results in this direction. There is now considerable evidence that the nervous system integrates redundant signals optimally, weighting each signal according to its reliability. One question of interest is whether artificial sensory feedback is combined with other sensory information in a natural manner. In this single-case study, we show that an amputee with a bidirectional prosthesis integrated artificial somatosensory feedback and blurred visual information in a statistically optimal fashion when estimating the size of a hand-held object. The patient controlled the opening and closing of the prosthetic hand through surface electromyography, and received intraneural stimulation proportional to the object’s size in the ulnar nerve when closing the robotic hand on the object. The intraneural stimulation elicited a vibration sensation in the phantom hand that substituted the missing haptic feedback. This result indicates that sensory substitution based on intraneural feedback can be integrated with visual feedback and make way for a promising method to investigate multimodal integration processes.
,